Cl. Miguel Fleta, 25 44600-Alcañiz (Te) Tel/Fax: 978 83 33 06 www.academia-nipho.es

Fórmulas de cinemática (generales y particulares)

www.vaxasoftware.com

M.R.U.	
Movimiento Rectilineo Uniforme $v = cte$, $a = 0$	$x = x_0 + v \cdot t$
M.R.U.A.	1 ,
Movimiento Rectilíneo Uniformemente Acelerado	$x = x_0 + v_0 \cdot t + \frac{1}{2} a \cdot t^2$
a = cte	$v = v_0 + a \cdot t$
	$v^2 = v_0^2 + 2a \cdot (x - x_0)$
M.C.U. Movimiento Circular Uniforme $\omega = cte$, $\alpha = 0$	$\varphi = \varphi_0 + \omega \cdot t$
M.C.U.A. Movimiento Circular Uniformemente Acelerado α = cte	$\varphi = \varphi_0 + \omega_0 \cdot t + \frac{1}{2}\alpha \cdot t^2$
	$\omega = \omega_0 + \alpha \cdot t$
Otras relaciones	Velocidad instantánea $\vec{v} = \frac{d\vec{r}}{dt}$ Aceleración instantánea $\vec{a} = \frac{d\vec{v}}{dt}$
	Aceleración instantánea $\vec{a} = \frac{d\vec{v}}{dt}$
	Velocidad media $\vec{v}_m = \frac{\Delta \vec{r}}{\Delta t} = \frac{\vec{r}_F - \vec{r}_I}{t_F - t_I}$
	Aceleración media $\vec{a}_m = \frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v}_F - \vec{v}_I}{t_F - t_I}$
	Aceleración tangencial $a_t = \frac{d \vec{v} }{dt}$
	Espacio recorrido al girar a $S = \varphi \cdot R$ una distancia R del centro
	Velocidad lineal al girar a $V = \omega \cdot R$ una distancia R del centro
	Aceleración tangencial al girar a una distancia R del $a_t = \alpha \cdot R$ centro en M.C.U ó M.C.U.A.
	Aceleración normal al girar a $a_n = \frac{V^2}{R} = \omega^2 \cdot R$ una distancia R del centro
	Aceleración total $a^2 = a_t^2 + a_n^2$
Conversión de unidades	km / h × 1000 / 3600 → m/s rpm × 2π / 60 → rad/s rad ÷ 2π → vueltas
Olamba C. Parisira anno 11	
Siendo x , S Posición, espacio recorrido m x_0 Posición inicial m	φ Posición angular rad φ_0 Posición angular inicial rad
v Velocidad m/s	φ Velocidad angular rad/s
v ₀ Velocidad inicial m/s	ω ₀ Velocidad angular inicial rad/s
a Aceleración total m/s²	α Aceleración angular rad/s ²
a_t Aceleración tangencial m/s^2	R Radio de la trayectoria m
a_n Aceleración normal m/s^2	

FORMULARIO DE CINEMÁTICA

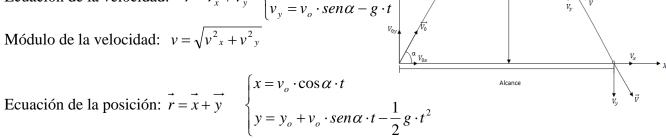
1. MOVIMIENTOS RECTILINEOS (Desplazamiento horizontal con notación vectorial)

Movimiento rectilíneo uniforme: $\vec{x} = \vec{x_o} + \vec{v} \cdot t$ (Ecuación de la posición)

Movimiento rectilíneo uniformemente acelerado:

$$\overrightarrow{x} = \overrightarrow{x_o} + \overrightarrow{v_o} \cdot t + \frac{1}{2} \overrightarrow{a} \cdot t^2$$
 (Ecuación de la posición)
 $\overrightarrow{v} = \overrightarrow{v_o} + \overrightarrow{a} \cdot t$ (Ecuación de la velocidad)

2. MOVIMIENTOS RECTILINEOS (Desplazamiento vertical con notación vectorial)


$$\overrightarrow{y} = \overrightarrow{y_o} \pm \overrightarrow{v_o} \cdot t - \frac{1}{2} \overrightarrow{g} \cdot t^2$$
 (Ecuación de la posición)
 $\overrightarrow{v} = \overrightarrow{v_o} - \overrightarrow{g} \cdot t$ (Ecuación de la velocidad)

Recuerda: El convenio de signos, las magnitudes con dirección hacia la derecha y hacia arriba son positivas y las que van hacia la izquierda y hacia abajo son negativas.

3. MOVIMIENTOS COMPUESTOS (Desplazamiento vertical y horizontal con notación vectorial)

Tiro parabólico

Ecuación de la velocidad: $\vec{v} = \vec{v_x} + \vec{v_y}$ $\begin{cases} v_x = v_o \cdot \cos \alpha \\ v_y = v_o \cdot sen\alpha - g \cdot t \end{cases}$

Calculo del alcance máximo: Llegamos al alcance máximo cuando la altura es cero, es decir, estamos en la posición $(x_{max},0)$, sustituimos en las ecuaciones de

la posición,
$$\begin{cases} x_{\text{max}} = v_o \cdot \cos \alpha \cdot t \\ o = v_o \cdot sen\alpha \cdot t - \frac{1}{2}g \cdot t^2 \end{cases}$$
 (suponemos que no hay altura inicial)

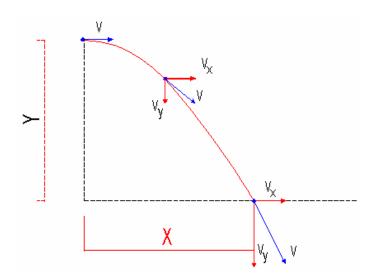
Despejamos el tiempo de la ecuación de altura sacándolo

común:
$$\begin{cases} o = t(v_o \cdot sen\alpha - \frac{1}{2}g \cdot t) \text{ y obtenemos dos valores de "t"} \\ t = \frac{2v_o \cdot sen\alpha}{g} \end{cases}$$

Cambiamos este valor del tiempo en la "
$$x_{max}$$
":
$$\begin{cases} x_{max} = v_o \cdot \cos \alpha \cdot \frac{2v_o \cdot sen\alpha}{g} = \frac{v_o^2 \cdot sen2\alpha}{g} \end{cases}$$

• Calculo de la altura máxima: Llegamos a la altura máxima cuando la velocidad es horizontal, es decir "v_y" es cero, despejamos de ahí el "t"

$$\{0 = v_o \cdot sen\alpha - g \cdot t \longrightarrow t = \frac{v_0 sen\alpha}{g}$$


y lo sustituimos en la ecuación de la altura,

$$\left\{ y_{\max} = v_o \cdot sen\alpha \frac{v_o sen\alpha}{g} - \frac{1}{2}g \cdot \left(\frac{v_o sen\alpha}{g} \right)^2 = \frac{v_o^2 \cdot sen^2\alpha}{g} - \frac{v_o^2 \cdot sen^2\alpha}{2g} = \frac{$$

Tiro horizontal

Es un caso particular del tiro parabólico, con altura inicial y ángulo de salida 0°, teniendo en cuenta que el sen0º=0 y el cos0º=1, las ecuaciones quedan trasformadas de este modo:

Ecuación de la velocidad: $\vec{v} = \overrightarrow{v_x} + \overrightarrow{v_y}$ $\begin{cases} v_x = v_o \\ v_y = -g \cdot t \end{cases}$ Ecuación de la posición: $\vec{r} = \vec{x} + \vec{y}$ $\begin{cases} x = v_o \cdot t \\ y = y_o - \frac{1}{2}g \cdot t^2 \end{cases}$

